Subatomic Physics

2022-2023

Exam

Monday 30 January 2022 15:00-17:00 CET

Remarks and instructions

- Please wite your name and you student number on every sheet
- Please put consecutive page numbers on your pages
- Provide your answers with clear context and explanations
- There are 13 points and 1 bonus point(s) The grade is $1+9^{*} \mathrm{~min}$ (number of pomts,total)/total
- The amount of points is listed in fiont of each sub-question.

1 General concepts (3.5 points)

Please keep your answers to a maximum of thee sentences.
a) (10) Discuss briefly what "size" means for fundamental particles and how this differs fiom the size of composite particles
b) (1.0) The electromagnetic interaction is considered a long range interaction. On the other hand, the weak and the stiong force are both short iange, although they are so for markedly different reasons Describe how this comes about for both cases.
c) (05) How come we have never obseı ved quanks drectly? Clarify which quantum number causes this in combination with the properties of the stiong force and what it means for the propagation of particles interacting through the stiong interaction
d) (1.0) To detect subatomic particles, it is needed to tiansform a micioscopic interaction to a macioscopic effect Describe one such process, gomg from the type of material interaction to detection

2 Nuclear decay (2.5 points)

The Nitrogen isotope ${ }_{7}^{16} \mathrm{~N}$ has a half-life of about 71 s and decays to ${ }_{8}^{16} \mathrm{O}$ which has a mass of about 159949 u
a) (10) What type of decay is this and which meraction(s) is/are responsible? White down the reaction mechanism of the aforementioned decay.
b) (05) Name a model to estimate the mass of $7_{7}^{16} \mathrm{~N}$ and other nucler.
c) (10) What is the maxımum energy of the electron released by this decay, given that the mass of ${ }_{7}^{16} \mathrm{~N}$ is about 16.0061 u ?

3 Mesons (4.0 points)

One type of hadronic matter comes m the form of $q \bar{q}$ pans, called mesons
a) (10) The π^{0}, the lightest meson, is composed of a lmear combination of the two hghtest $q \bar{q}$ pans, $u \bar{u}$ and $d \bar{d}$, and decays predommantly to $\gamma \gamma$ Which interaction is responsible and why can the π^{0} not decay to two gluons?
b) (1.0) Why is the hfetime of the π^{+}, which consists of $u \bar{d}$ and decays predommantly though $\mu^{+} \nu_{\mu}$, nme oiders of magnitude higher than π^{0} ? Would this ratio of lifetmes be different if the masses of the pron states were much higher?
c) (10) The η meson has spm- 0 and is also a $q \bar{q}$ state, like the pron, but is a lmear combination of three components (meluding also the $s \bar{s}$ state) It decays to $\gamma \gamma$ as well as to $\pi^{0} \pi^{0} \pi^{0}$ What does that mply for its panty and C-parity?
d) (10) Can the η meson decay to $\pi^{+} \pi^{-}$as well (assummg it is a stiong decay)? Motivate your answer by calculating the panty and C-panty of this final state and mdicate how they determine the possibility of this decay

4 NA62 experiment $\left(3.0+1.0^{*}\right.$ points $)$

At CERN, in the Nor th Area (NA), the NA62 experiment is searchng for the decay $K^{+} \rightarrow \pi^{+} \nu^{+} \nu^{-}$This decay proceeds through loop diagrams mvolving the weak decay, such as the one shown in Figure 1. Two years ago, NA62 observed 20 events in a sample where they expected 7 backgiound events and reported a measurement of the signal bianching fraction of $\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu^{+} \nu^{-}\right)=\left(10.6_{-3}^{+40}(\right.$ stat $) \pm 09$ (syst.) $) \times 10^{-11}$, where the finst uncertanty is statistical and the second is systematic

The charged kaon, K^{+}, is a particle composed of an up-quank and an anti-stıange quank, which decays with a lifetime of $(123 \pm 008) \times 10^{-8} \mathrm{~s}$, and is produced for the NA62 collaboration by colliding $400 \mathrm{GeV} / \mathrm{c}$ protons on a beryllium target In addition to the signal decay $K^{+} \rightarrow \pi^{+} \nu^{+} \nu^{-}$, the K^{+}also decays through the process $K^{+} \rightarrow \pi^{+} \pi^{0}$, which has a measured bianching fiaction of (20 $\left.67 \pm 008\right) \%$
a) (15) Draw the mteraction dagıam of the $K^{+} \rightarrow \pi^{+} \pi^{0}$ decay Which CKM elcments are mvolved in both decays? Note that there are three contributions participating in the $K^{+} \rightarrow \pi^{+} \nu \nu$ decay, one for each up-type quark Based on the CKM elements involved, what size would you expect the branchmg fraction of $K^{+} \rightarrow \pi^{+} \pi^{0}$ to be relative to the $K^{+} \rightarrow \pi^{+} \nu \nu$ decay? If you find a difference compared to the expected value, explain where this could come fiom
b) (05) As the goal is to detect the process $K^{+} \rightarrow \pi^{+} \nu^{+} \nu^{-}$, give a detection princrple that could be used to separate K^{+}particles that did not decay in the detector from those that decayed following $K^{+} \rightarrow \pi^{+} \nu^{+} \nu^{-}$. Note that the K^{+}particles entermg the NA62 detector have a well-defined momentum

Figure 1: One of the interaction dagiams for the $K^{+} \rightarrow \pi^{+} \nu^{+} \nu^{-}$decay
c) (1.0) The mone common mode $K^{+} \rightarrow \pi^{+} \pi^{0}$ can also act as a background and has to be rejected The π^{0} commonly decays to a pair of photons Indicate a detector punciple that can be used to identify this background
d) To measure the small branchung fractions associated with the $K^{+} \rightarrow \pi^{+} \nu^{+} \nu^{-}$decay, an enormous number of charged kaons needs to be produced Assuming that the beryllium tanget has a density of $185 \mathrm{~g} / \mathrm{cm}^{3}$, a thickness of 04 m , an atomic mass of $9012 u$, and that the closs section for $400 \mathrm{GeV} / \mathrm{c}$ protons on this target is 1 mb , calculate the requied number of protons hitting the target per second to achieve a production of 45 million charged kaons per second
e) (10^{*}) One possibility to modify the bianching fraction of the $K^{+} \rightarrow \pi^{+} \nu^{+} \nu^{-}$decay is though the exchange of a particle duectly coupling neutimos to quarks, with a so-called leptoquark Diaw the first order Feymman diagram for the decays in question via a leptoquark

Formulas and constants

Constants

Speed of light	c	3010^{8}	$\mathrm{~m} / \mathrm{s}$
Planck constant	h	4110^{-24}	GeV s
Election mass	m_{e}	051	MeV / c^{2}
Pıoton mass	m_{p}	93827	MeV / c^{2}
Neution mass	m_{n}	939.57	McV / c^{2}
Pion mass	m_{π}	13957	MeV / c^{2}
Muon mass	m_{μ}	10566	MeV / c^{2}
Kaon mass	$m_{K^{+}}$	49368	MeV / c^{2}
Atomıc mass unıt	u	93149	MeV / c^{2}
Avogadıo's constant	N_{A}	610^{23}	$\mathrm{~mol}{ }^{-1}$
Barn	b	$1 \cdot 10^{-28}$	$\mathrm{~m}^{2}$

Relations and models

De Broglie wavelength

$$
\lambda=\frac{h}{p},
$$

where p is momentum and h is Planck's constant.

Relativistic mechanics

$$
\begin{gathered}
E^{2}=p^{2} c^{2}+m^{2} c^{4} \\
E=\gamma m c^{2} ; \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
\end{gathered}
$$

Decay

$$
N(t)=e^{-t / \tau}
$$

where t is proper-time and τ is the lifetime of the particle

Cherenkov radiation

The angle θ of the Cherenkov light cone is given by

$$
\cos (\theta)=\frac{1}{n \beta}
$$

where n is the icfiaction index and β is the speed of the charged particle relative to the speed of light in vacuum

Charge parity

$$
\hat{C}|f \bar{f}, J, L, S\rangle=(-1)^{L+S}|f \bar{f}, J, L, S\rangle
$$

where f are fermons, L and S are orbital and spin angular momentum

CKM matrix and Wolfenstein parametrization

$$
\begin{gathered}
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{r d} & V_{r s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right), \\
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-\imath \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-\imath \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right),
\end{gathered}
$$

where A, λ, ρ and η are dimensionless parameters and terms are expanded up to order $\mathcal{O}\left(\lambda^{3}\right)$ Ther values are roughly $08,0.23,014$ and 0.35 , respectively

